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ABSTRACT
Detecting sarcastic expressions could promote the understanding

of natural language in social media. In this paper, we revisit sarcasm

detection from a novel perspective, so as to account for the long-

range literal sentiment inconsistencies. More concretely, we explore

a novel scenario of constructing an affective graph and a depen-

dency graph for each sentence based on the affective information

retrieved from external affective commonsense knowledge and the

syntactical information of the sentence. Based on it, an Affective De-

pendency Graph Convolutional Network (ADGCN) framework is

proposed to draw long-range incongruity patterns and inconsistent

expressions over the context for sarcasm detection by means with

interactively modeling the affective and dependency information.

Experimental results on multiple benchmark datasets show that

our proposed approach outperforms the current state-of-the-art

methods in sarcasm detection.
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1 INTRODUCTION
Sarcasm is a common speech act in human communications, which

has received much research attention [8, 9, 13, 16–18, 23]. As shown
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Sarcasm��I love when people ignore me. Non: Love you more than this.

Figure 1: Examples of Sarcasm andNon-sarcasm expression.

in Figure 1, there are two instances paired with their labels (Sar-
casm or Non-sarcasm). Note that both of them contain a decisive

sentiment word “love”. While in the sarcastic example, the word dis-

crepant “ignore” leads to a contradiction expression. That is, there

are some incongruity expressions in sarcastic context [13].

Some early studies attempt to extract the incongruity expres-

sions in sarcasm detection by searching a set of positive verbs and

negative situations [2, 10, 26] or employing lexical features [22].

Most recent methods employ deep neural networks to capture the

subtle semantic incongruity patterns [7, 32, 35]. Further, Babanejad

et al. [1] leverages both affective and contextual features to extend

the architecture of BERT for sarcastic expressions learning. Most

existing studies, however, are largely inadequate to determine the

affective dependencies in sarcastic expressions when the incon-

gruity patterns are separated far away in the context, or easy to

mistake the inessential contextual words as sarcastic descriptors.

As the sarcasm example shown in Figure 1, the word “love” is not
near to “ignore” in the incongruity expression.

In this work, inspired by some existing graph-based models pro-

posed in other tasks [4, 6, 11, 20, 30, 31, 36–38], we explore a novel

scenario of constructing an affective graph and a dependency graph

for each instance based on the affective clues retrieved from exter-

nal affective knowledge (SenticNet [3]) and the dependency tree of

the sentence, so as to leverage the contextual affective dependen-

cies of incongruity expressions in sarcasm detection. Based on it,

an Affective Dependency Graph Convolutional Network (ADGCN)

structure is employed to provide the long-range multi-word affec-

tive dependencies for understanding the roles of context words in

the learning of incongruity expressions. The main contributions of

our work can be summarized as follows:

• We are the first to exploit GCN model for drawing incon-

gruity patterns over the context in sarcasm detection.

• A novel scenario of affective and dependency graphs con-

struction is explored to extract the contradictory implica-

tions and incongruity expressions in sarcasm detection.

• Experimental results on a number of benchmark datasets

demonstrate that our proposed method achieves the state-

of-the-art performance in sarcasm detection.
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Figure 2: Architecture of the proposed ADGCN framework.

2 METHODOLOGY
In this section, we describe our proposed Affective Dependency

Graph Convolutional Network (ADGCN) framework in details. As

demonstrated in Figure 2, the architecture of the proposed ADGCN

framework contains three main components: 1) Deriving affective
and dependency graphs, which constructs an affective graph and

a syntax-aware dependency graph for each sentence based on af-

fective commonsense knowledge and dependency tree; 2) Learning
context representation, which learns the vector representations of

the context with bidirectional LSTMs (Bi-LSTM); 3) Learning graph
representation, which leverages the affective dependencies of the

context with multi-layer GCNs for sarcasm detection.

2.1 Deriving Affective and Dependency Graphs
To leverage the affective dependencies of the context, we explore

a novel scenario of constructing an affective graph and a depen-

dency graph for each sentence. This aims to discern the affective

expressions of the contextual words and preserve global structure

information of the sentence in sarcasm detection simultaneously.

Given a sentence s consists ofnwords s = {wi }
n
i=1, to explore the

affective expressions of the context for determining the role of con-

textual incongruity information in learning sarcastic expressions,

we construct an affective guided graph and attain an adjacency

matrixAa ∈ Rn×n , based on the affective scores of words retrieved

from an external affective commonsense knowledge:

Aai, j = |S(wi ) − S(w j )| (1)

where S(wi ) ∈ [−1, 1] represents the affective score of word wi
retrieved from SenticNet [3].We setS(wt ) = 0 ifwt is not contained

in the knowledge. | · | represents absolute value calculation. In

this way, words with opposite emotions could be highly regarded.

Thus the affective incongruity expressions could be propagated to

discriminate the contradiction between literal expression and the

authentic intention of the author in sarcasm detection.

In addition, intuitively, affective expressions generally depend on

some syntactic structure, as the sarcastic clue of “people ignore me”
shown in Figure 1. To this end, inspired by previous syntax-aware

graph methods [12, 19, 27, 34], in addition to the affective graph

we construct a dependency graph based on the dependency tree of

the sentence
1
:

Adi, j = 1 if T (wi ,w j ) (2)

where Ad ∈ Rn×n , whose remaining elements are 0. T(wi ,w j )

represents that there is a relation between wi and w j in the de-

pendency tree of the sentence. Inspired by [15], we construct the

undirected graph to enrich the affective and dependency informa-

tion: Ai, j = Aj,i , and also set a self-loop for each word: Ai,i = 1.

2.2 Learning Context Representation
We embed each word of s = {wi }

n
i=1 into anm-dimensional em-

bedding xi ∈ Rm via mapping the embedding from the lookup

table X ∈ Rm×|V |
, |V | is the vocabulary size. Then we feed the

embedding matrix x = [x1,x2, · · · ,xn ] into bidirectional LSTMs

to encode the input sentence into vector representations:

H = {h1,h2, · · · ,hn } = Bi-LSTM(x) (3)

Where ht ∈ R2dh denotes the hidden representation of xt in time

step t , dh denotes the dimensionality of hidden representation.

2.3 Learning Graph Representation
Different from conventional sarcasm detection methods that treated

a sentence as a word sequence and purely extracted sarcastic in-

formation from the literal or semantic content. We explore a novel

Affective Dependency Graph Convolutional Network (ADGCN)

framework that interactively feeding the affective and dependency

graphs of the sentence into the multi-layers GCN architecture to

leverage the long-range affective incongruity expressions. Each

node in the l-th GCN layer is updated according to the hidden

representations of its neighborhoods according to the adjacency

matrices of the two graphs, the process is defined as:

дl = ReLU( ˜Ad
ReLU( ˜Aaдl−1W l

a + b
l
a )W

l
d + b

l
d ) (4)

where дl−1 ∈ Rn×2dh is the hidden graph representation evolved

from the preceding GCN layer, and the original input nodes of the

first GCN layer are the context representation learned by Bi-LSTMs:

д0 = [h1,h2, · · · ,hn ]. ˜A is the normalized adjacency matrix:
˜Ai =

Ai/(Ei + 1). Ei =
∑n
j=1Ai, j is the degree of Ai .W l ∈ R2dh×2dh ,

bl ∈ R2dh are the trainable parameters of the l-th GCN layer.

Then inspired by [34], we employ a retrieval-based attention

mechanism to capture the affective dependency graph-oriented

features from context representations:

r =
n∑
t=1

αtht , αt =
exp(βt)∑n
i=1 exp(βi )

, βt =
n∑
i=1

h⊤t д
L
i (5)

where ⊤ represents matrix transposition, дL is the output of the

final GCN layer. Afterward, the final sarcastic representation is fed

into a fully-connected layer with softmax normalization to capture

a probability distribution ŷ of sarcasm decision space:

ŷ = softmax(Wor + bo ) (6)

where ŷ ∈ Rdp is the predicted sarcastic probability for the input

sentence, dp is the dimensionality of sarcasm labels.Wo ∈ Rdp×2dh

and bo ∈ Rdp are trainable parameters.

1
We employ spaCy toolkit to derive dependency tree of the sentence: https://spacy.io/.
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Table 1: Statistics of the experimental data.

Dataset

Train Test
Sarcasm Non Sarcasm Non

IAC-V1 862 859 97 94

IAC-V2 2947 2921 313 339

Tweets-1 (Riloff) 282 1051 35 113

Tweets-2 (Ptáček) 23456 24387 2569 2634

Reddit-1 (/r/movies) 5521 5607 1389 1393

Reddit-2 (/r/technology) 6419 6393 1596 1607

2.4 Learning Objective
We minimize the cross-entropy loss via the standard gradient de-

scent algorithm to train the model:

min

Θ
L = −

N∑
i=1

dp∑
j=1

y
j
i loдŷ

j
i + λ | |Θ| |

2
(7)

where N is the training data size. yi and ŷi respectively represent

the ground-truth and estimated label distribution of instance i . Θ
denotes all trainable parameters of the model, λ represents the

coefficient of L2-regularization.

3 EXPERIMENTS
3.1 Experimental Data and Settings
To evaluate our proposed model, following [28], we conduct exper-

iments on 6 benchmark datasets from 3 well-known sources:

• IAC (Internet Argument Corpus): We use two versions

of the dataset from [21], which are denoted as IAC-V1
2
and

IAC-V2
3
respectively.

• Tweets: We use two datasets collected by Riloff et al. [26]

and Ptáček et al. [25]. For both datasets, we retrieve tweets

using the Twitter API with the provided tweet IDs
4
.

• Reddit: We use two subsets (i.e. /r/movies and /r/technology)
of Reddit dataset provided by [14] for sarcasm detection.

The statistics of the experimental data are reported in Table 1.

In our experiments, for non-BERT models, we utilize GloVe [24]

to embed each word as a 300-dimensional embedding. The number

of GCN layers is set to 3. The dimensionality of hidden representa-

tions is set to 300. The coefficient λ of L2 regularization is set to 0.01.
Adam is utilized as the optimizer with a learning rate of 0.001 to

train the model, and the mini-batch size is 128 for Tweets-2 and 32

for other datasets. For BERT-based models, we use the pre-trained

uncased BERT-base [5] with 768-dimensional embedding, and the

learning rate is 0.00002. We perform Accuracy (Acc.) and Macro

F1-score (F1) to measure the performance of the models
5
.

3.2 Comparison Models
We compare our model, i.e. ADGCN and ADGCN-BERT (replace

Bi-LSTM with BERT), with the following 13 baselines
6
. Includ-

ing 1) statistic technique: NBOW [28]; 2) conventional neural

2
https://nlds.soe.ucsc.edu/sarcasm1

3
https://nlds.soe.ucsc.edu/sarcasm2

4
http://api.twitter.com/

5
The source code of this work is released at https://github.com/HLT-HITSZ/ADGCN

6
Since there are no unified datasets among existing studies, we conduct comparison

experiments of baselines on our datasets with open source code or reproduced code.

# GCN layers

A
cc

. (
%

)

Figure 3: Impact of the number of GCN layers.

networks: CNN, LSTM, ATT-LSTM [33]; 3) sarcasm detection

methods: GRNN [35], CNN-LSTM-DNN [7], SIARN [28], MI-
ARN [28], SMSD [32], SMSD-BiLSTM [32]; 4) BERT-based mod-

els: BERT [5], ACE2-BERT-EMoSi [1], ACE2-BERT-EAISe [1].

3.3 Main Experimental Results
Table 2 shows the experimental results on 6 benchmark datasets.We

can observe that our proposed ADGCN consistently outperforms

all compared baselines over both non-BERT and BERT-basedmodels

on all datasets. To be specific, the best improved results of Acc. and

F1 respectively are 7.65% and 7.78% compared with the previous

state-of-the-art performance. For BERT-based methods, the best

improved results of Acc. and F1 respectively are 7.37% and 7.35%

compared with previous state-of-the-art performance. This verifies

that our proposed model, which leveraging affective dependencies

of the context with a GCN architecture outstandingly improves the

performance of sarcasm detection.

3.4 Ablation Study
To analyze the impact of different components of the proposed

ADGCN bring to the performance, we conduct an ablation study

and report the results in Table 3. Note that removal of affective

graph sharply degrades the performance, which indicates that affec-

tive information is significant in the sarcastic expressions learning.

Additionally, the graph without syntax-aware refinement also leads

to a considerably poorer performance. This implies that refining

the affective graph with syntax-aware information advances the

model to extract the linchpin clues of incongruity expressions by

affective dependencies.

3.5 Impact of GCN Layers
To investigate the impact of the number of GCN layers on the per-

formance of our proposed ADGCN, we vary the number from 1 to

8 and report the results in Figure 3. Note that 3-layer GCN performs

overall better than other layers, and thus we set the number of

GCN layers as 3. One GCN layer performs unsatisfactorily on all

datasets, which indicates inadequate network structure is insuffi-

cient to exploit decent sarcastic features. Additionally, when the

layer greater than 3, the performance fluctuates and tends to decline

with the increasing number. This implies that roughly increasing

the number of GCN layers is vulnerable to slash the learning ability

of the model due to the sharp increase of model parameters.
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Table 2: Main experimental results on different datasets. Average scores over 10 runs are reported. Best scores are in bold.

Model

IAC-V1 IAC-V2 Tweets-1 Tweets-2 Reddit-1 Reddit-2

Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)
NBOW [28] 59.63 59.38 67.55 67.74 74.86 63.39 74.23 74.13 69.66 69.66 65.61 65.56

CNN 60.62 60.27 70.15 69.95 78.64 66.47 80.77 80.76 70.21 70.16 68.00 67.91

LSTM 60.52 60.45 71.10 70.84 79.33 67.62 80.79 80.78 70.66 70.59 68.80 68.16

ATT-LSTM [33] 63.45 63.18 65.46 65.33 80.70 69.23 81.56 81.56 70.50 70.44 68.62 68.55

GRNN [35] 63.87 62.44 72.23 70.92 79.10 68.35 81.18 80.14 71.55 70.47 67.15 67.14

CNN-LSTM-DNN [7] 66.49 66.46 76.99 67.93 76.49 67.80 79.74 79.20 71.17 71.14 67.62 67.34

SIARN [28] 64.24 63.79 74.98 74.95 79.12 67.47 83.59 83.59 70.66 70.58 68.55 68.51

MIARN [28] 64.45 63.89 75.84 75.80 79.19 67.11 83.78 83.78 70.72 70.68 68.48 68.44

SMSD [32] 65.13 65.07 72.19 72.13 78.11 67.18 81.25 81.24 69.58 69.55 68.94 68.90

SMSD-BiLSTM [32] 64.50 64.40 71.44 71.36 78.92 67.75 78.92 78.90 69.84 69.75 69.06 69.00

ADGCN (ours) 72.25 72.20 79.14 79.13 85.14 77.01 87.33 87.33 76.35 76.31 76.71 76.69
BERT [5] 68.95 68.88 78.41 78.40 83.38 76.08 86.37 86.36 76.89 76.87 77.42 77.41

ACE2-BERT-EMoSi [1] 66.49 66.48 76.75 76.65 81.76 72.12 86.58 86.58 74.64 74.62 76.30 76.35

ACE2-BERT-EAISe [1] 68.06 67.98 77.25 77.10 81.76 73.39 86.60 86.60 74.73 74.70 76.37 76.36

ADGCN-BERT (ours) 76.32 76.23 82.37 82.36 88.16 81.91 90.31 89.54 80.68 80.63 80.77 80.77

Table 3: Accuracy results of ablation study. A denotes affec-
tive graph, S denotes syntax-aware refinement.

Model IAC-V1 IAC-V2 Tweets-1 Tweets-2 Reddit-1 Reddit-2

ADGCN 72.25 79.14 85.14 87.33 76.35 76.71
w/o A 69.03 75.52 81.67 82.28 73.15 71.89

w/o S 71.13 77.20 83.16 85.31 75.76 73.78

3.6 Visualization
To qualitatively demonstrate how affective dependency graph im-

proves the performance of sarcasm detection, we present a visual-

ization analysis in Figure 4. We first visualize the attention scores

of typical sarcasm/non-sarcasm examples learned by our proposed

ADGCN in Figure 4 (a) to analyze how the proposed ADGCN draws

the affective dependencies in sarcastic/non-sarcastic expressions

learning by interactively modeling both affective and dependency

information of the context. Note that due to the proposed ADGCN,

the affective auxiliary syntactic dependency information enhances

the incongruous words from sarcasm sentences by attention sig-

nals. Hence, the weighted sum representation of sarcasm instances

would neither be similar to positive words nor negative words.

On the contrary, for the non-sarcasm instances, the representa-

tions will be similar to the affective words since the ADGCN only

focuses on few congruous words. Thus the representations of non-

sarcasm instances should be mixed with affective words but sepa-

ratedwith sarcasm instances. To further investigate the difference of

sarcastic/non-sarcastic representations, in Figure 4 (b), we show the

t-SNE [29] visualization of intermediate sarcasm and non-sarcasm

representations, which adhere to the hidden representations of af-

fective words derived by Bi-LSTM layers. Note that a significantly

clear separation between sarcasm representations and affective

word vectors is represented, while the distribution of non-sarcasm

representations is quite overlapping with affective words. This fur-

ther indicates that our proposed ADGCN effectively represents

non-sarcasm instances by attaching them to affective words, and

derive the sarcasm representations according to the contradictory

affective dependencies and incongruity expressions.

Positive word
Negative word
Sarcasm instance
Non-sarcasm instance

(b) Vectors visualization

I love when people ignore me
Love you more than this

Sarcasm-
Non-

(a) Attention visualization

Figure 4: Results of visualization.

4 CONCLUSION
In this paper, we propose a novel scenario of constructing an affec-

tive graph and a dependency graph for each sentence to learn the

long-range contradictory implications and incongruity expressions

in sarcasm detection. More concretely, an affective dependency

graph convolutional network (ADGCN) framework is exploited to

draw incongruity patterns and inconsistent sentiment expressions

over the context in the learning of sarcastic features by interactively

modeling both affective and syntactical information of the context.

Experimental results on multiple benchmark datasets show that our

proposed model significantly outperforms state-of-the-art baseline

methods in sarcasm detection.
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